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Plutonium: The density-functional-theory point of view

Per Söderlind and Alex Landa

Lawrence Livermore National Laboratory, Livermore, CA, USA

Density-functional theory (DFT) is a remarkably successful tool for describing 

many metals throughout the Periodic Table. Here we present the results of this 

theory when applied to plutonium metal, the perhaps most complex and difficult-

to-model metal of all. The fundamental product of DFT is the ground-state total 

energy. In the case of Pu, we show that DFT produces total energies that can 

predict the complex phase diagram accurately. Focusing on the  phase, we 

show that DFT electronic structure is consistent with measured photoemission 

spectra. The observed non-magnetic state of -Pu could possibly be explained in 

DFT by spin moments, likely disordered, that are magnetically neutralized by 

anti-parallel aligned orbital moments. As an alternative to this non-magnetic 

model an extension of DFT with enhanced orbital polarization is presented in 

which magnetism can be suppressed.



     Plutonium metal has many physical properties that are counterintuitive, 

puzzling, and intriguing. The perhaps most perplexing behaviors of Pu are 

displayed in its phase diagram. Notice in Figure 1 that it has as many as six 

condensed phases with stark contrasts in both atomic geometry and volume. At 

lower temperatures, Pu has very low symmetry atomic arrangements with small 

volumes ( and  monoclinic), then with increasing temperature it expands to 

higher symmetry ( orthorhombic and  cubic), followed by a volume collapse to 

lower symmetry (’ tetragonal) before shrinking ( cubic). These transitions take 

place in a limited temperature range suggesting that the phases compete closely 

with each other. Pu thus provides an extraordinary challenge for any theory that 

describes phase stability. In the literature one finds several models for Pu that 

unfortunately cannot be discussed in this short article.

The foundation of modern DFT took shape in the mid 60’s with the famous 

papers by Hohenberg & Kohn, Kohn & Sham [1], for which Kohn received the 

Nobel Prize 1998. The theoretical framework has been implemented in gradually 

more accurate computer codes since its invention and is now the essential 

workhorse for first-principles calculations for materials. Although popular for 

describing many materials, its usefulness for plutonium may have escaped some 

of the non-specialists. Here we review some of the results and insights DFT 

gives us for Pu.

One important challenge for any theory is to evaluate its capability to 

reproduce or predict a phase diagram. The word “predict” is appropriate for DFT 

because in this theory no adjustable parameters are used to reproduce a wanted 



(experimental) result. In Figure 2, we contrast DFT total energies for the six 

known phases of Pu [2] with the experimental phase diagram in Figure 1. Notice 

immediately that the theory rank the total energies in the order , , , , ’, and 

. This exact order is also found in the experimental phase diagram as a function 

of temperature. On a closer view, Figure 2 also reveals that the atomic volumes 

order exactly the same way as in Figure 1. Hence, DFT captures the main 

features of the very delicate and complex phase diagram of Pu. Because the 

various Pu phases are all stable at relatively low temperatures, the DFT total 

energy can approximately be corrected for temperature dependence of the 

vibrating atoms within a quasi-harmonic approach [3]. In Figure 3 we show the 

result of this correction by plotting the free energy as a function of temperature 

for the , , , and  phase. The figure shows that temperature stabilizes these 

phases in accordance with the known phase diagram, displayed in Figure 1. This 

is a testament to the high quality of the DFT total energies. Comparable results 

have been published elsewhere [4].

Next, we focus on the important  phase and relate the theoretical 

electronic structure with measured data. In Figure 4, we show calculated 

electronic density-of-states (DOS), that has been appropriately convoluted with 

instrumental and lifetime broadening [5], together with experimental 

photoemission data at two photon energies [5,6]. Clearly, these spectra are 

consistent with each other and DFT electronic structure appears to agree with 

experiments for -Pu. The DFT electronic structure is spin polarized with a 

resulting spin moment on each Pu atom. This would then seem to imply that DFT 



predicts -Pu to be magnetic, something that has not been observed for pure Pu 

metal [7]. But for Pu nothing is simple or intuitive. Examining the DFT results for 

-Pu, it has been realized that (i) at temperature where it is stable, the spins are 

most likely disordered [8] and (ii) the orbital moment may perfectly cancel the 

spin moment making each Pu atom magnetically neutral [9]. If DFT is correct 

regarding (i) and (ii), then it make sense that no substantial evidence of 

magnetism in -Pu have been revealed. 

If neither (i) nor (ii) is correct, then it is likely DFT is insufficient in modeling 

the nature of magnetism in Pu. It has been suggested that orbital correlations, in 

terms of spin-orbit coupling and orbital polarization, are much stronger than spin 

correlations and therefore the spin moments could appropriately be suppressed 

in a constrained DFT treatment [10]. In Figure 5 we show the total energies for 

calculations with the spin moment quenched (NM) in combination with spin-orbit 

coupling (SO) and orbital polarization (OP). Notice that addition of SO and OP 

both lowers the total energy substantially while simultaneously expanding the 

volume closer to the observed volume (V). Allowing ferromagnetic spin 

polarization lowers the total energy further but does not improve on the 

equilibrium volume. It was further shown [10] that the main features (peak 

locations) of the DOS did not depend sensitively on the spin restriction. 

Therefore, one can argue that suppressing the spin moment, when the 

mentioned orbital correlations are accounted for, is a reasonable non-spin DFT 

model for -Pu. Another interesting observation [10], is that SO and OP 

substantially quench the spin moment (from 5 B to about 3 B).



The fact that spin-orbit coupling and orbital polarization have an intricate 

relationship to the spin moment was formally investigated in a recent publication 

[11]. By introducing two parameters, they were able to suppress the spin moment 

and accomplish a non-magnetic state in -Pu. Referring the details to their 

publication [11] it was discussed that the “conventional” OP correction, as used 

here and introduced by Brooks [12], could effectively be strengthened to possibly 

accomplish a similar non-magnetic state for -Pu. In Figure 6 we present 

calculations for -Pu done in the same fashion as the ones presented above 

(Figure 2) but with an amplification factor to the OP correction. A value equal to 

unity corresponds to our standard OP [12] while a value greater than unity 

attempts to model the full treatment with the introduced adjustable parameters 

[11]. Notice in Figure 6 that the ferromagnetic spin moment gradually approaches 

zero with increasing OP enhancement. At the same time, the atomic volume 

remains close to the observed value, whereas the bulk modulus apparently is 

becoming somewhat large. Thus, this approach, as well as the more complete 

treatment [11], represents a non-magnetic scheme for -Pu that, in contrast to 

DFT, relies upon one or more adjustable parameters. It remains to be seen if it 

can be applied also for the other phases, particularly the  phase, of Pu.

This work performed under the auspices of the U.S. DOE by LLNL DE-AC52-

07NA27344.
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Figure 1  The experimental phase diagram of Pu.

Figure 2 DFT total energies for the six known condensed phases of Pu.

Figure 3 Helmholtz free energies (see text).

Figure 4 Experimental -Pu photoemission spectra (125 eV [5] and 40.8 eV 

[6]), and theory [5].

Figure 5 DFT total energies, non-magnetic (NM, zero spin) and 

ferromagnetic (FM), for -Pu. Spin-orbit interaction and orbital polarization are 

denoted SO and OP, respectively.

Figure 6 Spin (S), atomic volume (V), and bulk modulus (B) as functions of 

orbital-polarization enhancement factor. Dashed horizontal lines denote the 

measured values.
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